Marco Fries

Email: marco.fries(at)uni-siegen.de
Raum: US-D 117 (Ludwig-Wittgenstein-Haus, Campus Unteres Schloss)
Telefon: +49 (0) 271 / 740 5165
Sprechstunde: Nach Vereinbarung
Vita
Marco Fries studierte Wirtschaftsinformatik dual an der Uni Siegen. Parallel zum Studium war er bei der GIB mbH als dualer Student beschäftigt. Die GIB mbH ist im Bereich Softwareentwicklung rund um SAP mit eigenen Produkten tätig. In diesem Unternehmen schrieb er auch seine Bachelorarbeit. Nach erfolgreichem Abschluss des Bachelorstudiums arbeitete er zunächst als Softwareentwickler und später als Berater und Projektleiter beim gleichen Unternehmen.
Nach zwei Jahren Vollzeit fing er auf Basis einer halben Stelle das Masterstudium Human Computer Interaction an der Uni Siegen an. Seine Masterarbeit fokussierte sich im Bereich Absatzplanung und maschinelles Lernen mit dem Titel: „Eine Design Case Study zur Absatzprognose mittels maschinellen Lernens in der Lebensmittelbranche“.
Nach zwei weiteren Jahren als Abteilungsleiter für die globale Beratung, Academy und den Support fing er im August 2021 an der Uni Siegen als wissenschaftlicher Mitarbeiter am Lehrstuhl für Cyber-Physische Systeme an. Hier wirkt er im Projekt ExPro mit, sowie in der Unterstützung eines Projekts zur Erschließung eines regionalen Zukunftszentrums für künstliche Intelligenz.
Publikationen
2022
-
Fries, M. & Ludwig, T. (2022)‘Why are the Sales Forecasts so low?’ Socio-Technical Challenges of Using Machine Learning for Forecasting Sales in a Bakery
IN Computer Supported Cooperative Work (CSCW) doi:10.1007/s10606-022-09458-z
[BibTeX] [Abstract] [Download PDF]Artificial intelligence and the underlying machine learning (ML) methods are increasingly finding their way into our working world. One of these areas is sales planning, where machine learning is used to leverage a variety of different input parameters such as prices, promotions, or the weather, to forecast sales, and therefore directly affects the production of products and goods. To satisfy the goal of environmental sustainability as well as address short shelf life, the food industry represents an interesting application field for the use of ML for optimizing sales planning. Within this paper, we will examine the design, and especially the application, of ML methods in the food industry and show the current challenges that exist in the use of such concepts and technologies from the end-user’s point of view. Our study of a smaller bakery company shows that there are enormous challenges in setting up the appropriate infrastructure and processes for the implementation of ML, that the output quality of ML processes does not always match the perceived result quality, and that trust in the functioning of the algorithms is the most important criterion for using ML processes in practice.
@article{fries_why_2022, title = {‘{Why} are the {Sales} {Forecasts} so low?’ {Socio}-{Technical} {Challenges} of {Using} {Machine} {Learning} for {Forecasting} {Sales} in a {Bakery}}, issn = {1573-7551}, shorttitle = {‘{Why} are the {Sales} {Forecasts} so low?}, url = {https://doi.org/10.1007/s10606-022-09458-z}, doi = {10.1007/s10606-022-09458-z}, abstract = {Artificial intelligence and the underlying machine learning (ML) methods are increasingly finding their way into our working world. One of these areas is sales planning, where machine learning is used to leverage a variety of different input parameters such as prices, promotions, or the weather, to forecast sales, and therefore directly affects the production of products and goods. To satisfy the goal of environmental sustainability as well as address short shelf life, the food industry represents an interesting application field for the use of ML for optimizing sales planning. Within this paper, we will examine the design, and especially the application, of ML methods in the food industry and show the current challenges that exist in the use of such concepts and technologies from the end-user’s point of view. Our study of a smaller bakery company shows that there are enormous challenges in setting up the appropriate infrastructure and processes for the implementation of ML, that the output quality of ML processes does not always match the perceived result quality, and that trust in the functioning of the algorithms is the most important criterion for using ML processes in practice.}, language = {en}, urldate = {2022-12-19}, journal = {Computer Supported Cooperative Work (CSCW)}, author = {Fries, Marco and Ludwig, Thomas}, month = dec, year = {2022}, keywords = {Artificial Intelligence, Human-AI Interaction, Human–Computer Interaction, Machine Learning, Sales Forecast}, }